34 research outputs found

    Summaries of plenary, symposia, and oral sessions at the XXII World Congress of Psychiatric Genetics, Copenhagen, Denmark, 12-16 October 2014

    Get PDF
    The XXII World Congress of Psychiatric Genetics, sponsored by the International Society of Psychiatric Genetics, took place in Copenhagen, Denmark, on 12-16 October 2014. A total of 883 participants gathered to discuss the latest findings in the field. The following report was written by student and postdoctoral attendees. Each was assigned one or more sessions as a rapporteur. This manuscript represents topics covered in most, but not all of the oral presentations during the conference, and contains some of the major notable new findings reported

    DARTpaths, an in silico platform to investigate molecular mechanisms of compounds

    Get PDF
    SUMMARY: Xpaths is a collection of algorithms that allow for the prediction of compound-induced molecular mechanisms of action by integrating phenotypic endpoints of different species; and proposes follow-up tests for model organisms to validate these pathway predictions. The Xpaths algorithms are applied to predict developmental and reproductive toxicity (DART) and implemented into an in silico platform, called DARTpaths. AVAILABILITY AND IMPLEMENTATION: All code is available on GitHub https://github.com/Xpaths/dartpaths-app under Apache license 2.0, detailed overview with demo is available at https://www.vivaltes.com/dartpaths/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Galpha

    No full text
    The spindle apparatus dictates the plane of cell cleavage, which is critical in the choice between symmetric or asymmetric division. Spindle positioning is controlled by an evolutionarily conserved pathway, which involves LIN-5/GPR-1/2/Galpha in Caenorhabditis elegans, Mud/Pins/Galpha in Drosophila and NuMA/LGN/Galpha in humans. GPR-1/2 and Galpha localize LIN-5 to the cell cortex, which engages dynein and controls the cleavage plane during early mitotic divisions in C. elegans. Here we identify ASPM-1 (abnormal spindle-like, microcephaly-associated) as a novel LIN-5 binding partner. ASPM-1, together with calmodulin (CMD-1), promotes meiotic spindle organization and the accumulation of LIN-5 at meiotic and mitotic spindle poles. Spindle rotation during maternal meiosis is independent of GPR-1/2 and Galpha, yet requires LIN-5, ASPM-1, CMD-1 and dynein. Our data support the existence of two distinct LIN-5 complexes that determine localized dynein function: LIN-5/GPR-1/2/Galpha at the cortex, and LIN-5/ASPM-1/CMD-1 at spindle poles. These functional interactions may be conserved in mammals, with implications for primary microcephal

    Assessment of the combined nitrate and nitrite exposure from food and drinking water: application of uncertainty around the nitrate to nitrite conversion factor

    No full text
    Dietary exposure to nitrate and nitrite occurs via three main sources; occurrence in (vegetable) foods, food additives in certain processed foods and contaminants in drinking water. While nitrate can be converted to nitrite in the human body, their risk assessment is usually based on single substance exposure in different regulatory frameworks. Here, we assessed the long-term combined exposure to nitrate and nitrite from food and drinking water. Dutch monitoring data (2012–2018) and EFSA data from 2017 were used for concentration data. These were combined with data from the Dutch food consumption survey (2012–2016) to assess exposure. A conversion factor (median 0.023; range 0.008–0.07) was used to express the nitrate exposure in nitrite equivalents which was added to the nitrite exposure. The uncertainty around the conversion factor was taken into account by using conversion factors randomly sampled from the abovementioned range. The combined dietary exposure was calculated for the Dutch population (1–79 years) with different exposure scenarios to address regional differences in nitrate and nitrite concentrations in drinking water. All scenarios resulted in a combined exposure above the acceptable daily intake for nitrite ion (70 µg/kg bw), with the mean exposure varying between 95–114 µg nitrite/kg bw/day in the different scenarios. Of all ages, the combined exposure was highest in children aged 1 year with an average of 250 µg nitrite/kg bw/day. Vegetables contributed most to the combined exposure in food in all scenarios, varying from 34%–41%. Food additive use contributed 8%–9% to the exposure and drinking water contributed 3%–19%. Our study is the first to perform a combined dietary exposure assessment of nitrate and nitrite while accounting for the uncertain conversion factor. Such a combined exposure assessment overarching different regulatory frameworks and using different scenarios for drinking water is a better instrument for protecting human health than single substance exposure.</p
    corecore